Model Context Protocol (MCP): The Standard for AI Tool Integration
By Learnia Team
Model Context Protocol (MCP): The Standard for AI Tool Integration
This article is written in English. Our training modules are available in French.
In late 2024, Anthropic introduced the Model Context Protocol (MCP), an open standard for connecting AI assistants to external tools, data sources, and services. As AI agents become more capable and widely deployed, the need for standardized integration has become critical. MCP addresses this by providing a universal "language" for AI-to-tool communication.
This comprehensive guide explains MCP's architecture, implementation, and significance for AI development.
The Integration Problem
Before MCP
Every AI application built custom integrations:
┌─────────────────────────────────────────────────────┐
│ Custom Integration Chaos │
├─────────────────────────────────────────────────────┤
│ │
│ AI App 1 ──custom code──► Database A │
│ AI App 1 ──custom code──► API B │
│ AI App 1 ──custom code──► Service C │
│ │
│ AI App 2 ──different code──► Database A │
│ AI App 2 ──different code──► API B │
│ AI App 2 ──different code──► Service D │
│ │
│ Result: N apps × M services = N×M integrations │
│ │
└─────────────────────────────────────────────────────┘
Problems:
- →Duplicated effort across applications
- →Inconsistent implementations
- →Hard to maintain
- →Limited reusability
- →Security varies widely
The MCP Solution
Standardize the connection layer:
┌─────────────────────────────────────────────────────┐
│ MCP Standardized Layer │
├─────────────────────────────────────────────────────┤
│ │
│ AI App 1 ─┐ ┌─► Database A │
│ │ │ │
│ AI App 2 ─┼──► MCP Protocol ─┼─► API B │
│ │ │ │
│ AI App 3 ─┘ └─► Service C │
│ │
│ Result: N apps + M servers (via standard MCP) │
│ │
└─────────────────────────────────────────────────────┘
Benefits:
- →Build once, use everywhere
- →Consistent security model
- →Community-maintained servers
- →Plug-and-play capability
- →Clear responsibility boundaries
MCP Architecture
Core Components
┌─────────────────────────────────────────────────────┐
│ MCP Architecture │
├─────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ │
│ │ MCP HOST │ │ MCP SERVER │ │
│ │ (AI App) │◄──────►│ (Service) │ │
│ └─────────────┘ JSON └─────────────┘ │
│ │ RPC │ │
│ │ │ │
│ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ │
│ │ CLIENT │ │ SERVER │ │
│ │ Library │ │ Library │ │
│ └─────────────┘ └─────────────┘ │
│ │
└─────────────────────────────────────────────────────┘
MCP Host:
- →The AI application (Claude Desktop, IDEs, etc.)
- →Maintains connections to servers
- →Routes requests from AI to appropriate server
MCP Client:
- →Library within the host
- →Handles protocol communication
- →Manages server lifecycle
MCP Server:
- →Exposes functionality via MCP
- →Can be local or remote
- →Provides tools, resources, or prompts
Three Capability Types
1. Tools Actions the AI can execute:
{
"name": "search_database",
"description": "Search the company database",
"inputSchema": {
"type": "object",
"properties": {
"query": {"type": "string"},
"limit": {"type": "integer"}
}
}
}
2. Resources Data the AI can read:
{
"uri": "file:///data/reports/quarterly.pdf",
"name": "Q4 Report",
"mimeType": "application/pdf"
}
3. Prompts Reusable prompt templates:
{
"name": "code_review",
"description": "Structured code review prompt",
"arguments": [
{"name": "code", "required": true},
{"name": "language", "required": false}
]
}
How MCP Works
Connection Flow
1. INITIALIZATION
Host ──► Server: "initialize" request
Server ──► Host: capabilities response
Host ──► Server: "initialized" notification
2. DISCOVERY
Host ──► Server: "list_tools" request
Server ──► Host: available tools list
3. INVOCATION
AI decides to use tool
Host ──► Server: "call_tool" with arguments
Server ──► Host: tool result
4. CLEANUP
Host ──► Server: shutdown notification
Example: Database Tool
Server Implementation (Python):
from mcp.server import Server
from mcp.types import Tool, TextContent
server = Server("database-server")
@server.list_tools()
async def list_tools():
return [
Tool(
name="query_users",
description="Query user database",
inputSchema={
"type": "object",
"properties": {
"filter": {"type": "string"},
"limit": {"type": "integer", "default": 10}
}
}
)
]
@server.call_tool()
async def call_tool(name: str, arguments: dict):
if name == "query_users":
results = await database.query(
filter=arguments.get("filter"),
limit=arguments.get("limit", 10)
)
return [TextContent(type="text", text=str(results))]
Host Configuration (Claude Desktop):
{
"mcpServers": {
"database": {
"command": "python",
"args": ["database_server.py"],
"env": {
"DATABASE_URL": "postgresql://..."
}
}
}
}
Available MCP Servers
Official Servers
Anthropic provides reference implementations:
| Server | Function |
|---|---|
| Filesystem | Read/write local files |
| GitHub | Repository operations |
| GitLab | GitLab integration |
| Slack | Slack messaging |
| Google Drive | Document access |
| PostgreSQL | Database queries |
| Puppeteer | Browser automation |
| Memory | Persistent memory |
Community Servers
Growing ecosystem:
- →Notion integration
- →Linear (issue tracking)
- →Obsidian (notes)
- →Various APIs
- →Custom enterprise tools
Finding Servers
Resources:
- →GitHub: github.com/modelcontextprotocol
- →MCP Registry: Community-maintained list
- →npm/PyPI: Published packages
Building MCP Servers
Python SDK
# Basic MCP server in Python
import asyncio
from mcp.server import Server
from mcp.server.stdio import stdio_server
from mcp.types import Tool, TextContent
# Create server
app = Server("my-server")
# Define tools
@app.list_tools()
async def list_tools():
return [
Tool(
name="greet",
description="Generate a greeting",
inputSchema={
"type": "object",
"properties": {
"name": {"type": "string"}
},
"required": ["name"]
}
)
]
# Implement tools
@app.call_tool()
async def call_tool(name: str, arguments: dict):
if name == "greet":
return [TextContent(
type="text",
text=f"Hello, {arguments['name']}!"
)]
# Run server
async def main():
async with stdio_server() as (read, write):
await app.run(read, write)
asyncio.run(main())
TypeScript SDK
// Basic MCP server in TypeScript
import { Server } from "@modelcontextprotocol/sdk/server";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio";
const server = new Server({
name: "my-server",
version: "1.0.0"
});
// Define tools
server.setRequestHandler("tools/list", async () => ({
tools: [{
name: "calculate",
description: "Perform calculation",
inputSchema: {
type: "object",
properties: {
expression: { type: "string" }
}
}
}]
}));
// Implement tools
server.setRequestHandler("tools/call", async (request) => {
if (request.params.name === "calculate") {
const result = eval(request.params.arguments.expression);
return { content: [{ type: "text", text: String(result) }] };
}
});
// Start server
const transport = new StdioServerTransport();
server.connect(transport);
Security Considerations
Trust Boundaries
┌─────────────────────────────────────────────────────┐
│ Security Boundaries │
├─────────────────────────────────────────────────────┤
│ │
│ ┌───────────────────────────────────────────────┐ │
│ │ UNTRUSTED │ │
│ │ AI Model outputs (potentially adversarial) │ │
│ └───────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────┐ │
│ │ MCP HOST │ │
│ │ - Validates tool calls │ │
│ │ - Enforces permissions │ │
│ │ - Logs actions │ │
│ └───────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────┐ │
│ │ MCP SERVER │ │
│ │ - Implements access controls │ │
│ │ - Validates inputs │ │
│ │ - Limits scope │ │
│ └───────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────┘
Best Practices
For Server Developers:
- →Validate all inputs strictly
- →Implement least-privilege access
- →Log all operations
- →Handle errors gracefully
- →Never trust AI-provided paths/URLs
For Host Administrators:
- →Review server capabilities before enabling
- →Configure appropriate permissions
- →Monitor server activity
- →Keep servers updated
- →Isolate sensitive servers
Host Support
Claude Desktop
Native MCP support:
- →Configure servers in settings
- →Servers run locally
- →Full tool/resource/prompt support
IDE Integrations
Growing support:
- →VS Code extensions
- →JetBrains plugins
- →Custom IDE integrations
Custom Applications
Build your own:
- →Use MCP client libraries
- →Implement host logic
- →Connect to any MCP servers
Future of MCP
Roadmap Items
Protocol Enhancements:
- →Streaming responses
- →Better error handling
- →Authentication standards
- →Remote server protocols
Ecosystem Growth:
- →More official servers
- →Enterprise integrations
- →Certification program
- →Enhanced discovery
Industry Adoption
MCP is positioned to become:
- →Standard for AI integrations
- →Required skill for AI developers
- →Part of enterprise AI architecture
Key Takeaways
- →
MCP is an open standard for connecting AI assistants to tools and data sources
- →
Three capability types: tools (actions), resources (data), prompts (templates)
- →
Architecture separates hosts (AI apps) from servers (capabilities)
- →
SDKs available for Python and TypeScript development
- →
Growing ecosystem of official and community servers
- →
Security requires careful trust boundary management
- →
Becoming standard for AI tool integration across the industry
Learn AI Agent Development
MCP is a key technology for building capable AI agents. Understanding how agents use tools—and how to build those integrations—is essential for modern AI development.
In our Module 6 — AI Agents & Orchestration, you'll learn:
- →How AI agents reason and plan
- →Tool integration patterns
- →The ReAct framework
- →Multi-agent orchestration
- →Building safe, capable agents
- →Error handling and recovery
These skills prepare you to build production-ready AI agents.
Module 6 — AI Agents & ReAct
Create autonomous agents that reason and take actions.